Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme.

نویسندگان

  • Mina Nikanjam
  • Eleanor A Blakely
  • Kathleen A Bjornstad
  • Xiao Shu
  • Thomas F Budinger
  • Trudy M Forte
چکیده

The low density lipoprotein (LDL) receptor has been shown to be upregulated in GBM tumor cells and is therefore a potential molecular target for the delivery of therapeutic agents. A synthetic nano-LDL (nLDL) particle was developed and tested to determine its utility as a drug delivery vehicle targeted to GBM tumors. nLDL particles were constructed by combining a synthetic peptide containing a lipid binding motif and the LDL receptor (LDLR) binding domain of apolipoprotein B-100 with a lipid emulsion consisting of phosphatidyl choline, triolein, and cholesteryl oleate. Composition analysis, fast protein liquid chromatography, and electron microscopy revealed that nLDL was highly reproducible and intermediate in size between high density lipoprotein and LDL particles (10.5+/-2.8 nm diameter). The binding and uptake of fluorescently labeled nLDL particles was assessed using fluorescence microscopy. Uptake of nLDL was time dependent, exhibiting saturation at approximately 3 h, and concentration dependent, exhibiting saturation at concentrations greater than 5 microM peptide. Using Lysotracker as a cellular marker, nLDL co-localized with lysosomes. nLDL binding was eliminated by blocking LDLRs with suramin and nLDL inhibited binding of plasma LDL to LDLRs. Collectively these data strongly suggest that the synthetic nano-LDLs described here are taken up by LDLR and can serve as a drug delivery vehicle for targeting GBM tumors via the LDLR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein.

The status of the low-density lipoprotein (LDL) receptor and LDL receptor-related protein (LRP) in seven human glioma cell lines was evaluated to extend our knowledge of human glioblastoma multiforme tumor metabolism for future drug design. Cell lines SF-767, SF-763, A-172, U-87 MG, U-251 MG, U-343 MG, and SF-539 were used. Binding of 125I-labeled LDL to these cells at 4 degrees C was carried o...

متن کامل

New sol-gel derived aluminum oxide-ibuprofen nanocomposite as a controlled releasing medication

Objective(s): In a new approach, following the development in metal oxide chemistry, the ibuprofen as low water soluble nonsteroidal anti-inflammatory drug diffused into synthetic sol-gel derived nano porous g-alumina by an impregnation method in order to increase the solubility and control the drug release in physiological environment. Methods: Sol-gel m...

متن کامل

Nanoparticles in cellular drug delivery.

This review highlights the properties of nanoparticles used in targeted drug delivery, including delivery to cells as well as organelle targets, some of the known pharmacokinetic properties of nanoparticles, and their typical modifications to allow for therapeutic delivery. Nanoparticles exploit biological pathways to achieve payload delivery to cellular and intracellular targets, including tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 328 1  شماره 

صفحات  -

تاریخ انتشار 2007